Performance of 4D-Var with Different Strategies for the Use of Adjoint Physics with the FSU Global Spectral Model
نویسندگان
چکیده
A set of four-dimensional variational data assimilation (4D-Var) experiments were conducted using both a standard method and an incremental method in an identical twin framework. The full physics adjoint model of the Florida State University global spectral model (FSUGSM) was used in the standard 4D-Var, while the adjoint of only a few selected physical parameterizations was used in the incremental method. The impact of physical processes on 4D-Var was examined in detail by comparing the results of these experiments. The inclusion of full physics turned out to be significantly beneficial in terms of assimilation error to the lower troposphere during the entire minimization process. The beneficial impact was found to be primarily related to boundary layer physics. The precipitation physics in the adjoint model also tended to have a beneficial impact after an intermediate number (50) of minimization iterations. Experiment results confirmed that the forecast from assimilation analyses with the full physics adjoint model displays a shorter precipitation spinup period. The beneficial impact on precipitation spinup did not result solely from the inclusion of the precipitation physics in the adjoint model, but rather from the combined impact of several physical processes. The inclusion of full physics in the adjoint model exhibited a detrimental impact on the rate of convergence at an early stage of the minimization process, but did not affect the final convergence. A truncated Newton-like incremental approach was introduced for examining the possibility of circumventing the detrimental aspects using the full physics in the adjoint model in 4D-Var but taking into account its positive aspects. This algorithm was based on the idea of the truncated Newton minimization method and the sequential cost function incremental method introduced by Courtier et al., consisting of an inner loop and an outer loop. The inner loop comprised the incremental method, while the outer loop consisted of the standard 4D-Var method using the full physics adjoint. The limited-memory quasi-Newton minimization method (L-BFGS) was used for both inner and outer loops, while information on the Hessian of the cost function was jointly updated at every iteration in both loops. In an experiment with a two-cycle truncated Newton-like incremental approach, the assimilation analyses turned out to be better than those obtained from either the standard 4D-Var or the incremental 4D-Var in all aspects examined. The CPU time required by this two-cycle approach was larger by 35% compared with that required by the incremental 4D-Var without almost any physics in the adjoint model, while the CPU time required by the standard 4D-Var with the full physics adjoint model was more than twice that required by the incremental 4D-Var. Finally, several hypotheses concerning the impact of using standard 4D-Var full physics on minimization convergence were advanced and discussed.
منابع مشابه
Performance of 4D-Var strategies using the FSU Global Spectral Model with its full physics adjoint
متن کامل
Impact of Parameter Estimation on the Performance of the FSU Global Spectral Model Using Its Full-Physics Adjoint
The full-physics adjoint of the Florida State University Global Spectral Model at resolution T42L12 is applied to carry out parameter estimation using an initialized analysis dataset. The three parameters, that is, the biharmonic horizontal diffusion coefficient, the ratio of the transfer coefficient of moisture to the transfer coefficient of sensible heat, and the Asselin filter coefficient, a...
متن کاملAdaptive observations using HSV and TESV in a 4D-Var framework with a finite volume shallow-water model
A comparative analysis of observation targeting methods based on total energy singular vectors (TESVs) and Hessian singular vectors (HSVs) is performed with a finite volume global shallow-water model, along with its first and second order adjoint model. A 4D-Var data assimilation framework is considered that allows for adaptive observations distributed in both time and space domain. To obtain t...
متن کاملVariational chemical data assimilation with approximate adjoints
6 Data assimilation obtains improved estimates of the state of a physical system by com7 bining imperfect model results with sparse and noisy observations of reality. In the four 8 dimensional variational (4D-Var) framework data assimilation is formulated as an opti9 mization problem, which is solved using gradient based optimization methods.The 4D10 Var gradient is obtained by forcing the adjo...
متن کاملAdaptive observations in the context of 4D-Var data assimilation
The design of adaptive observations strategies must account for the particular properties of the data assimilation method. A new adjoint sensitivity approach to the targeted observations problem is proposed in the context of fourdimensional variational data assimilation (4D-Var). The method is based on a periodic update of the adjoint sensitivity field that takes into account the interaction be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000